Astronomy

NASA’s Voyager Will Do More Science With New Power Strategy

The plan will keep Voyager 2’s science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

Launched in 1977, the Voyager 2 spacecraft is more than 12 billion miles (20 billion kilometers) from Earth, using five science instruments to study interstellar space. To help keep those instruments operating despite a diminishing power supply, the aging spacecraft has begun using a small reservoir of backup power set aside as part of an onboard safety mechanism. The move will enable the mission to postpone shutting down a science instrument until 2026, rather than this year.

Voyager 2 and its twin Voyager 1 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. The probes are helping scientists answer questions about the shape of the heliosphere and its role in protecting Earth from the energetic particles and other radiation found in the interstellar environment.

“The science data that the Voyagers are returning gets more valuable the farther away from the Sun they go, so we are definitely interested in keeping as many science instruments operating as long as possible,” said Linda Spilker, Voyager’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for NASA.

The Voyager proof test model, shown at NASA’s Jet Propulsion Laboratory in 1976, was a direct replica of the twin Voyager space probes that launched in 1977.

The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model’s scan platform stretches to the right, holding several of the spacecraft’s science instruments in their deployed positions.Credits: NASA/JPL-Caltech

Power to the Probes

Both Voyager probes power themselves with radioisotope thermoelectric generators (RTGs), which convert heat from decaying plutonium into electricity. The continual decay process means the generator produces slightly less power each year. So far, the declining power supply hasn’t impacted the mission’s science output, but to compensate for the loss, engineers have turned off heaters and other systems that are not essential to keeping the spacecraft flying.

With those options now exhausted on Voyager 2, one of the spacecraft’s five science instruments was next on their list. (Voyager 1 is operating one less science instrument than its twin because an instrument failed early in the mission. As a result, the decision about whether to turn off an instrument on Voyager 1 won’t come until sometime next year.)

In search of a way to avoid shutting down a Voyager 2 science instrument, the team took a closer look at a safety mechanism designed to protect the instruments in case the spacecraft’s voltage – the flow of electricity – changes significantly. Because a fluctuation in voltage could damage the instruments, Voyager is equipped with a voltage regulator that triggers a backup circuit in such an event. The circuit can access a small amount of power from the RTG that’s set aside for this purpose. Instead of reserving that power, the mission will now be using it to keep the science instruments operating.

Although the spacecraft’s voltage will not be tightly regulated as a result, even after more than 45 years in flight, the electrical systems on both probes remain relatively stable, minimizing the need for a safety net. The engineering team is also able to monitor the voltage and respond if it fluctuates too much. If the new approach works well for Voyager 2, the team may implement it on Voyager 1 as well.

“Variable voltages pose a risk to the instruments, but we’ve determined that it’s a small risk, and the alternative offers a big reward of being able to keep the science instruments turned on longer,” said Suzanne Dodd, Voyager’s project manager at JPL. “We’ve been monitoring the spacecraft for a few weeks, and it seems like this new approach is working.”

The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Neptune and Uranus; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here.

Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity.Credits: NASA/JPL-Caltech

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

Source: NASA

Related Posts

El sistema solar tendrá un segundo Sol

  La enana naranja Gliese 710 cruzará las fronteras gravitacionales de nuestro sistema solar dentro de unos 1,3 millones de años, según un informe publicado por los investigadores…

Enorme lago de agua helada en Marte facilitará la colonización

Enorme lago de agua helada en Marte facilitará la colonización La revista Geophysical Research Letters acaba de publicar un artículo donde se detalla el descubrimiento de un enorme lago…

Kepler encuentra gemelo de la tierra con una órbita de 395 días y capaz de albergar vida

Un planeta recién descubierto capaz de albergar vida. Science Magazine, New Scientist, ha revelado que se han descubierto 20 mundos extraterrestres que podrían albergar vida. Según un análisis…

All Alone in the Cosmos: A Unique Galaxy Mystifies Astronomers

Astronomers have discovered an unusually lonely galaxy, 3C 297, using NASA’s Chandra X-ray Observatory and the International Gemini Observatory. Located 9.2 billion light-years from Earth, the galaxy appears…

The James Webb Space Telescope found the farthest galaxy ever seen

The James Webb Space Telescope (JWST) is a space telescope that was launched in December 2021 and is currently conducting infrared astronomy. It is the largest optical telescope…

Las dos lunas de Marte en realidad son fragmentos de una luna mayor desaparecida, según un nuevo estudio

Marte tiene dos lunas: Fobos y Deimos, pero no se parecen mucho a nuestro propio satélite. Ambas son pequeñas y tienen una forma tremendamente irregular. Un nuevo estudio aporta pruebas que…